organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate

Jerry P. Jasinski,^a* Albert E. Pek,^a B. P. Siddaraju,^b H. S. Yathirajan^c and B. Narayana^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, V.V Puram College of Science, Bangalore 560 004, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 4 July 2010; accepted 7 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 20.0.

In the cation of the title compound, $C_{11}H_{15}CINO^+$.- $C_4H_3O_4 \cdot C_4H_4O_4$, the dihedral angle between the mean planes of the chlorine-substituted aromatic ring and the 4hydroxypiperidinium ring (C-C-C-C-N) is 61.9 (8)°. Intramolecular O-H···O and intermolecular O-H···O and N-H···O hydrogen bonding, as well as weak π -stacking interactions [centroid–centroid distance = 3.646(5) Å] help to establish the packing.

Related literature

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984). For related structures, see: James & Williams (1974); Bertolasi et al. (1980); Dawson et al. (1986); Vyas et al. (1999); Kiang et al. (2003); Trask et al. (2005); Mohamed et al. (2009); Dutkiewicz et al. (2010); Fun et al. (2010); Jasinski et al. (2010). For bondlength data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{11}H_{15}CINO^{+}{\cdot}C_{4}H_{3}O_{4}^{-}{\cdot}C_{4}H_{4}O_{4}$ $M_r = 443.83$

Monoclinic, C2/c a = 19.282 (7) Å

b = 7.867 (3) Å
c = 25.115 (9) Å
$\beta = 91.545 \ (5)^{\circ}$
$V = 3808 (2) \text{ Å}^3$
7 - 8

Data collection

Bruker APEXII CCD	18187 measured reflections
diffractometer	5841 independent reflections
Absorption correction: multi-scan	5194 reflections with $I > 2\sigma($
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.021$
$T_{\min} = 0.878, T_{\max} = 0.907$	

Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$

 $0.52 \times 0.41 \times 0.39 \text{ mm}$

 $> 2\sigma(I)$

T = 100 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.03	refinement
5841 reflections	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
292 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 01C - H1C \cdots 02B^{i} \\ 01A - H2A \cdots 01B^{ii} \\ N1C - H13C \cdots 03B^{iii} \\ N1C - H14C \cdots 02A^{iv} \\ 04A - H1A \cdots 03A \\ 03B - H1B \cdots 04B \end{array}$	0.82 0.90 (2) 0.890 (17) 0.887 (17) 0.91 (2) 1.18 (2)	1.97 1.68 (2) 1.954 (18) 2.087 (17) 1.65 (2) 1.23 (2)	2.7852 (13) 2.5546 (13) 2.8328 (14) 2.9144 (15) 2.5531 (13) 2.4108 (12)	171 162 (2) 168.6 (16) 154.9 (15) 173.7 (19) 177 (2)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $x, -y + 1, z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. BPS thanks R. L. Fine Chem, Bangalore for a gift sample of 4-(4-chlorophenyl)piperidin-4-ol. HSY thanks the University of Mysore for research facilities and for sabbatical leave.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2372).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 2287-2291.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dawson, B. M., Katz, H. & Glusker, J. P. (1986). Acta Cryst. C42, 67-71.
- Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, 0562.
- Fun, H.-K., Hemamalini, M., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, 0682-0683.
- James, M. N. G. & Williams, G. J. B. (1974). Acta Cryst. B30, 1249-1257.

- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, 0366-0367.
- Kiang, Y. H., Huq, A., Stephens, P. W. & Xu, W. (2003). J. Pharm. Sci. 92, 1844-1853.
- Mohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881-2889.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trask, A. V., Motherwell, S. W. D. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.
- Vartanyan, R. S. (1984). *Pharm. Chem. J.* **18**, 736–749. Vyas, K., Moses Babu, J. & Om Reddy, G. (1999). *Acta Cryst.* **C55**, IUC9900104.

Acta Cryst. (2010). E66, o2012-o2013 [doi:10.1107/S1600536810026917]

4-(4-Chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate

J. P. Jasinski, A. E. Pek, B. P. Siddaraju, H. S. Yathirajan and B. Narayana

Comment

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative and a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine is reported (Vartanyan, 1984). A study of the structural chemistry of maleic acid and related substances arises from the fact that these systems possess short but highly strained hydrogen bonds (James & Williams, 1974). The crystal structures of maleic acid (James & Williams, 1974), carbinoxamine maleate (Bertolasi *et al.*, 1980), [2-(2,2-dicyclohexylethyl) piperidine] maleate (Dawson *et al.*, 1986), domeperidone maleate (Vyas *et al.*, 1999), enalapril maleate (Kiang *et al.*, 2003), 1:1 cocrystal of caffeine with maleic acid (Trask *et al.*, 2005), 4-dimethylaminopyridinium maleate (Mohamed *et al.*, 2009), 4-(4chlorophenyl)piperidin-4-ol (Dutkiewicz *et al.*, 2010), bis[4-(4-chlorophenyl)-4-hydroxypiperidinium] dipicrate dimethyl sulfoxide solvate (Fun *et al.*, 2010) and trimipraminium maleate (Jasinski *et al.*, 2010) have been reported. In view of the importance of salts of piperidines, this paper reports the crystal structure of the title compound, $C_{11}H_{15}Cl N O^+$, $C_4H_3O_4^-$, $C_4H_4O_4$.

The asymmetric unit of the title compound (Fig.1) contains one 4-(4-chlorophenyl)-4-hydroxypiperidinium cation, one maleate anion, and one maleic acid molecule. The protonated 4-hydroxypiperidinium cation is in a chair conformation (puckering parameters Q, θ , and $\varphi = 0.576$ (2) Å, 179.0 (8)° and 159.955 (0)°, respectively; (Cremer & Pople, 1975). For an ideal chair θ has a value of 0 or 180°). Bond distances and angles are in normal ranges (Allen *et al.*, 1987). The dihedral angle between the mean planes of the piperidinium ring in the cation (C7C/C8C/C9C/C10C/C11C/N1C) and the benzene ring (C1—C6) is 61.9 (8)°. Strong intramolecular O—H…O and intermolecular O—H…O, N—H…O hydrogen bonding interactions (Table 1, Fig. 2) dominate the crystal packing which leads to the formation of chains along [010]. In addition, weak π -stacking intermolecular interactions occur between symmetry related benzene rings (Table 2) which also influence the crystal packing.

Experimental

4-(4-chlorophenyl)-piperidin-4-ol (2.2 g, 0.01 mol) and maleic acid (1.16 g, 0.01 mol) were dissolved in 20 ml of methanol. The mixture was stirred for 30 minutes at 333 K. Then the solution was kept aside for 3 days at room temperature. Yellow crystals were obtained (m.p: 381–383 K) by slow evaporation of methanol solution.

Refinement

The hydroxyl H atoms, H1A, H2A, H1B, H1C and N H atoms, H13C, H14C, were located by a Fourier map. These H atoms and the rest of the H atoms were then positioned geometrically and allowed to ride on their parent atoms with *X*—H lengths of 0.91Å (O4A), 0.90Å (O1A), 1.18Å (O3B), 0.82Å (O1C), 0.89–0.89Å (N1C), 0.93Å (CH) or 0.97Å (CH₂). Isotropic

displacement parameters for these atoms were set to 1.4–3.5 times (OH), 1.8 times (NH), 1.20 (CH) or 1.2 (CH₂) times U_{eq} of the parent atom.

F(000) = 1856

 $\theta = 2.6 - 31.3^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, yellow

 $0.52\times0.41\times0.39~mm$

T = 100 K

 $D_{\rm x} = 1.548 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8484 reflections

Figures

Fig. 1. Molecular structures of the $C_{11}H_{15}CINO^+$, $C_4H_3O_4^-$ and $C_4H_4O_4$ entities, showing the atom labeling scheme and 30% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound $C_{11}H_{15}CINO^+$, $C_4H_3O_4^-$, $C_4H_4O_4$, viewed down [100].

4-(4-Chlorophenyl)-4-hydroxypiperidinium maleate maleic acid solvate

Crystal data

C₁₁H₁₅ClNO⁺·C₄H₃O₄⁻·C₄H₄O₄ $M_r = 443.83$ Monoclinic, C2/c Hall symbol: -C 2yc a = 19.282 (7) Å b = 7.867 (3) Å c = 25.115 (9) Å $\beta = 91.545$ (5)° V = 3808 (2) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer	5841 independent reflections
Radiation source: fine-focus sealed tube	5194 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ω scans	$\theta_{\text{max}} = 31.3^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -27 \rightarrow 27$
$T_{\min} = 0.878, T_{\max} = 0.907$	$k = -11 \rightarrow 11$
18187 measured reflections	<i>l</i> = −35→35

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 3.2429P]$ where $P = (F_o^2 + 2F_c^2)/3$
5841 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
292 parameters	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.480203 (14)	0.66435 (4)	0.161617 (11)	0.02088 (7)
O4B	0.16691 (4)	0.58804 (10)	0.50337 (3)	0.01619 (15)
O3B	0.22900 (4)	0.66101 (10)	0.42453 (3)	0.01604 (15)
C5B	0.20779 (5)	0.56565 (13)	0.38519 (4)	0.01359 (18)
C4B	0.14848 (6)	0.44620 (14)	0.39300 (4)	0.01543 (19)
H4B	0.1353	0.3844	0.3628	0.019*
C2B	0.11909 (5)	0.47937 (13)	0.49149 (4)	0.01414 (19)
C3B	0.11113 (6)	0.41304 (14)	0.43602 (4)	0.01520 (19)
H3B	0.0747	0.3371	0.4304	0.018*
O3A	0.46151 (4)	0.35880 (11)	0.96021 (3)	0.01793 (16)
C2A	0.44308 (6)	0.35385 (13)	1.00654 (4)	0.01452 (19)
C3A	0.38419 (6)	0.45056 (14)	1.02827 (4)	0.0163 (2)
НЗА	0.3766	0.4349	1.0644	0.020*
C5A	0.33654 (6)	0.61984 (14)	0.94690 (4)	0.01610 (19)
C4A	0.34039 (6)	0.55740 (14)	1.00297 (4)	0.0162 (2)
H4A	0.3060	0.6007	1.0244	0.019*
O1A	0.47414 (4)	0.26101 (10)	1.04317 (3)	0.01712 (16)
O2A	0.29197 (4)	0.72438 (11)	0.93499 (3)	0.02023 (17)
O1B	0.07936 (4)	0.42630 (10)	0.52580 (3)	0.01788 (16)
O2B	0.23403 (4)	0.57247 (10)	0.34108 (3)	0.01693 (16)
C4C	0.37887 (5)	0.24201 (13)	0.25343 (4)	0.01180 (18)
C1C	0.44091 (5)	0.50191 (14)	0.19706 (4)	0.01430 (19)
C6C	0.39980 (5)	0.54258 (13)	0.23944 (4)	0.01428 (19)

H6C	0.3928	0.6554	0.2490	0.017*
C5C	0.36902 (5)	0.41155 (13)	0.26767 (4)	0.01336 (18)
H5C	0.3415	0.4374	0.2964	0.016*
C3C	0.42116 (5)	0.20613 (14)	0.21058 (4)	0.01490 (19)
H3C	0.4287	0.0936	0.2010	0.018*
C2C	0.45221 (6)	0.33510 (14)	0.18203 (4)	0.0161 (2)
H2C	0.4800	0.3100	0.1534	0.019*
O1C	0.33643 (4)	-0.04881 (10)	0.24944 (3)	0.01551 (15)
H1C	0.3122	-0.0211	0.2235	0.023*
C10C	0.39685 (5)	0.03445 (13)	0.32796 (4)	0.01363 (18)
H10A	0.4395	-0.0037	0.3123	0.016*
H10B	0.4080	0.1291	0.3514	0.016*
C8C	0.27733 (5)	0.14407 (13)	0.30800 (4)	0.01358 (18)
H8C1	0.2841	0.2427	0.3307	0.016*
H8C2	0.2444	0.1744	0.2797	0.016*
C7C	0.34665 (5)	0.09495 (13)	0.28369 (4)	0.01154 (17)
C9C	0.36671 (5)	-0.10930 (14)	0.36035 (4)	0.01464 (19)
H9C1	0.3594	-0.2083	0.3379	0.018*
H9C2	0.3989	-0.1401	0.3891	0.018*
C11C	0.24805 (5)	-0.00126 (14)	0.34043 (4)	0.01492 (19)
H11A	0.2054	0.0348	0.3566	0.018*
H11B	0.2374	-0.0968	0.3172	0.018*
N1C	0.29935 (5)	-0.05450 (12)	0.38279 (3)	0.01394 (17)
O4A	0.38012 (5)	0.56565 (12)	0.91126 (3)	0.02079 (17)
H13C	0.2810 (9)	-0.142 (2)	0.3999 (7)	0.026 (4)*
H14C	0.3072 (8)	0.031 (2)	0.4050 (7)	0.024 (4)*
H1A	0.4103 (10)	0.490 (3)	0.9264 (8)	0.042 (5)*
H2A	0.5113 (11)	0.206 (3)	1.0307 (8)	0.049 (6)*
H1B	0.1992 (12)	0.629 (3)	0.4638 (9)	0.059 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.01862 (13)	0.02183 (14)	0.02233 (13)	-0.00193 (9)	0.00295 (9)	0.01083 (10)
O4B	0.0190 (4)	0.0170 (4)	0.0125 (3)	-0.0050 (3)	-0.0001 (3)	-0.0003 (3)
O3B	0.0197 (4)	0.0149 (4)	0.0136 (3)	-0.0050 (3)	0.0016 (3)	-0.0013 (3)
C5B	0.0153 (4)	0.0120 (4)	0.0134 (4)	0.0008 (3)	-0.0006 (3)	0.0011 (3)
C4B	0.0185 (5)	0.0139 (5)	0.0138 (4)	-0.0022 (4)	-0.0015 (4)	-0.0018 (3)
C2B	0.0158 (5)	0.0126 (4)	0.0139 (4)	-0.0002 (4)	-0.0009 (3)	0.0011 (3)
C3B	0.0172 (5)	0.0140 (5)	0.0143 (4)	-0.0022 (4)	-0.0017 (4)	-0.0009 (3)
O3A	0.0202 (4)	0.0188 (4)	0.0150 (3)	0.0024 (3)	0.0031 (3)	0.0004 (3)
C2A	0.0154 (5)	0.0122 (4)	0.0160 (4)	-0.0015 (3)	0.0007 (3)	-0.0003 (3)
C3A	0.0191 (5)	0.0153 (5)	0.0146 (4)	0.0008 (4)	0.0027 (4)	0.0000 (4)
C5A	0.0168 (5)	0.0136 (5)	0.0178 (5)	-0.0020 (4)	-0.0011 (4)	0.0008 (4)
C4A	0.0171 (5)	0.0145 (5)	0.0170 (5)	0.0005 (4)	0.0022 (4)	-0.0005 (4)
O1A	0.0181 (4)	0.0173 (4)	0.0159 (3)	0.0041 (3)	0.0010 (3)	0.0013 (3)
O2A	0.0195 (4)	0.0164 (4)	0.0246 (4)	0.0012 (3)	-0.0029 (3)	0.0038 (3)
O1B	0.0198 (4)	0.0188 (4)	0.0151 (3)	-0.0042 (3)	0.0025 (3)	0.0011 (3)

O2B	0.0191 (4)	0.0187 (4)	0.0131 (3)	-0.0003 (3)	0.0019 (3)	0.0003 (3)
C4C	0.0123 (4)	0.0121 (4)	0.0110 (4)	-0.0001 (3)	-0.0002 (3)	0.0005 (3)
C1C	0.0122 (4)	0.0171 (5)	0.0136 (4)	-0.0018 (4)	-0.0003 (3)	0.0057 (4)
C6C	0.0151 (4)	0.0124 (4)	0.0154 (4)	-0.0006 (4)	0.0004 (3)	0.0013 (3)
C5C	0.0152 (4)	0.0129 (4)	0.0122 (4)	-0.0001 (3)	0.0023 (3)	-0.0003 (3)
C3C	0.0155 (5)	0.0144 (5)	0.0149 (4)	0.0006 (4)	0.0018 (3)	-0.0003 (4)
C2C	0.0158 (5)	0.0197 (5)	0.0128 (4)	0.0010 (4)	0.0035 (3)	0.0013 (4)
O1C	0.0234 (4)	0.0113 (3)	0.0117 (3)	-0.0010 (3)	-0.0014 (3)	-0.0015 (3)
C10C	0.0133 (4)	0.0147 (5)	0.0129 (4)	0.0004 (3)	0.0004 (3)	0.0017 (3)
C8C	0.0133 (4)	0.0128 (4)	0.0147 (4)	0.0006 (3)	0.0014 (3)	0.0030 (3)
C7C	0.0139 (4)	0.0100 (4)	0.0107 (4)	-0.0004 (3)	0.0006 (3)	-0.0003 (3)
C9C	0.0161 (5)	0.0143 (5)	0.0135 (4)	0.0015 (4)	0.0005 (3)	0.0019 (3)
C11C	0.0133 (4)	0.0160 (5)	0.0154 (4)	-0.0015 (4)	0.0002 (3)	0.0033 (4)
N1C	0.0172 (4)	0.0136 (4)	0.0110 (4)	-0.0017 (3)	0.0011 (3)	0.0011 (3)
O4A	0.0230 (4)	0.0236 (4)	0.0157 (4)	0.0043 (3)	0.0010 (3)	0.0026 (3)

Geometric parameters (Å, °)

Cl1—C1C	1.7424 (11)	C1C—C2C	1.3844 (16)
O4B—C2B	1.2865 (13)	C6C—C5C	1.3929 (14)
O4B—H1B	1.23 (2)	С6С—Н6С	0.9300
O3B—C5B	1.2978 (13)	C5C—H5C	0.9300
O3B—H1B	1.18 (2)	C3C—C2C	1.3876 (15)
C5B—O2B	1.2315 (13)	СЗС—НЗС	0.9300
C5B—C4B	1.4972 (15)	C2C—H2C	0.9300
C4B—C3B	1.3403 (15)	O1C—C7C	1.4314 (12)
C4B—H4B	0.9300	O1C—H1C	0.8200
C2B—O1B	1.2408 (13)	C10C—C9C	1.5178 (15)
C2B—C3B	1.4917 (15)	C10C—C7C	1.5301 (15)
СЗВ—НЗВ	0.9300	C10C—H10A	0.9700
O3A—C2A	1.2265 (13)	C10C—H10B	0.9700
C2A—O1A	1.3072 (13)	C8C—C11C	1.5212 (15)
C2A—C3A	1.4830 (15)	C8C—C7C	1.5339 (15)
C3A—C4A	1.3396 (16)	C8C—H8C1	0.9700
СЗА—НЗА	0.9300	C8C—H8C2	0.9700
C5A—O2A	1.2209 (14)	C9C—N1C	1.4932 (14)
C5A—O4A	1.3153 (14)	С9С—Н9С1	0.9700
C5A—C4A	1.4912 (16)	С9С—Н9С2	0.9700
C4A—H4A	0.9300	C11C—N1C	1.4930 (14)
O1A—H2A	0.90 (2)	C11C—H11A	0.9700
C4C—C5C	1.3952 (15)	C11C—H11B	0.9700
C4C—C3C	1.3965 (14)	N1C—H13C	0.890 (17)
C4C—C7C	1.5255 (14)	N1C—H14C	0.887 (17)
C1C—C6C	1.3816 (15)	O4A—H1A	0.91 (2)
C2B—O4B—H1B	111.1 (10)	C1C—C2C—C3C	118.61 (10)
C5B—O3B—H1B	111.1 (11)	C1C—C2C—H2C	120.7
O2B—C5B—O3B	122.07 (10)	C3C—C2C—H2C	120.7
O2B—C5B—C4B	118.62 (9)	C7C—O1C—H1C	109.5
O3B—C5B—C4B	119.30 (9)	C9C—C10C—C7C	112.16 (9)

C3B—C4B—C5B	131.05 (10)	C9C—C10C—H10A	109.2
C3B—C4B—H4B	114.5	C7CC10CH10A	109.2
C5B—C4B—H4B	114.5	C9C—C10C—H10B	109.2
O1B—C2B—O4B	120.98 (10)	C7C—C10C—H10B	109.2
O1B—C2B—C3B	118.74 (10)	H10A—C10C—H10B	107.9
O4B—C2B—C3B	120.28 (9)	C11C—C8C—C7C	111.33 (9)
C4B—C3B—C2B	129.85 (10)	C11C—C8C—H8C1	109.4
C4B—C3B—H3B	115.1	C7C—C8C—H8C1	109.4
C2B—C3B—H3B	115.1	C11C—C8C—H8C2	109.4
O3A—C2A—O1A	123.13 (10)	C7C—C8C—H8C2	109.4
O3A—C2A—C3A	125.25 (10)	H8C1—C8C—H8C2	108.0
O1A—C2A—C3A	111.63 (9)	O1C—C7C—C4C	110.55 (8)
C4A—C3A—C2A	128.80 (10)	O1C—C7C—C10C	105.37 (8)
С4А—С3А—Н3А	115.6	C4C—C7C—C10C	109.86 (8)
С2А—С3А—Н3А	115.6	O1C—C7C—C8C	109.32 (8)
O2A—C5A—O4A	120.67 (10)	C4C—C7C—C8C	112.22 (8)
O2A—C5A—C4A	118.03 (10)	C10C—C7C—C8C	109.28 (8)
O4A—C5A—C4A	121.29 (10)	N1C-C9C-C10C	109.67 (9)
C3A—C4A—C5A	132.01 (10)	N1C—C9C—H9C1	109.7
C3A—C4A—H4A	114.0	C10C—C9C—H9C1	109.7
C5A—C4A—H4A	114.0	N1C—C9C—H9C2	109.7
C2A—O1A—H2A	112.2 (13)	С10С—С9С—Н9С2	109.7
C5C—C4C—C3C	118.49 (9)	Н9С1—С9С—Н9С2	108.2
C5C—C4C—C7C	122.50 (9)	N1C-C11C-C8C	110.12 (9)
C3C—C4C—C7C	118.99 (9)	N1C—C11C—H11A	109.6
C6C—C1C—C2C	121.83 (9)	C8C—C11C—H11A	109.6
C6C—C1C—C11	119.35 (9)	N1C—C11C—H11B	109.6
C2C—C1C—C11	118.82 (8)	C8C—C11C—H11B	109.6
C1C—C6C—C5C	118.81 (10)	H11A—C11C—H11B	108.1
С1С—С6С—Н6С	120.6	C11C—N1C—C9C	112.23 (8)
С5С—С6С—Н6С	120.6	C11C—N1C—H13C	107.2 (11)
C6C—C5C—C4C	120.95 (9)	C9C—N1C—H13C	108.7 (11)
С6С—С5С—Н5С	119.5	C11C—N1C—H14C	109.4 (11)
C4C—C5C—H5C	119.5	C9C—N1C—H14C	108.7 (10)
C2C—C3C—C4C	121.30 (10)	H13C—N1C—H14C	110.6 (15)
С2С—С3С—Н3С	119.3	C5A—O4A—H1A	110.0 (12)
C4C—C3C—H3C	119.3		
O2B—C5B—C4B—C3B	179.66 (11)	Cl1—C1C—C2C—C3C	179.61 (8)
O3B—C5B—C4B—C3B	-1.76 (18)	C4C—C3C—C2C—C1C	0.45 (16)
C5B—C4B—C3B—C2B	-3.5 (2)	C5C—C4C—C7C—O1C	152.93 (9)
O1B—C2B—C3B—C4B	-177.70 (11)	C3C—C4C—C7C—O1C	-28.58 (13)
O4B—C2B—C3B—C4B	1.50 (18)	C5C—C4C—C7C—C10C	-91.18 (12)
O3A—C2A—C3A—C4A	0.66 (19)	C3C—C4C—C7C—C10C	87.30 (11)
O1A—C2A—C3A—C4A	-179.62 (11)	C5C—C4C—C7C—C8C	30.61 (13)
C2A—C3A—C4A—C5A	-2.4 (2)	C3C—C4C—C7C—C8C	-150.91 (9)
O2A—C5A—C4A—C3A	-176.96 (12)	C9C—C10C—C7C—O1C	-62.30 (10)
O4A—C5A—C4A—C3A	2.41 (19)	C9C—C10C—C7C—C4C	178.59 (8)
C2C—C1C—C6C—C5C	0.00 (16)	C9C—C10C—C7C—C8C	55.07 (11)
Cl1—C1C—C6C—C5C	-179.61 (8)	C11C—C8C—C7C—O1C	60.01 (11)

173.7 (19)

177 (2)

2.5531 (13)

2.4108 (12)

C1C—C6C—C5C—C4C	-0.44 (16)		C11C—C8C—C7C—C4C			-176.97 (8)	
C3C—C4C—C5C—C6C	0.87 (15)		C11C-C8C-C7C-C10C			-54.84 (11)	
C7C—C4C—C5C—C6C	179.36 (9)		C7C-C10C-C9C-N1C			-56.43 (11)	
C5C—C4C—C3C—C2C	-0.88 (16)		C7C-C8C-C11C-N1C			56.71 (11)	
C7C—C4C—C3C—C2C	-179.42 (9)		C8C—C11C—N1C—C9C			-58.48 (11)	
C6C—C1C—C2C—C3C	0.00 (16)		C10C—C9C—N1C—C11C		57.97 (11)		
Hydrogen-bond geometry (Å, °)							
D—H…A		<i>D</i> —Н		H···A	$D \cdots A$		D—H··· A
O1C—H1C···O2B ⁱ		0.82		1.97	2.7852 (13)		171.
O1A—H2A…O1B ⁱⁱ		0.90 (2)		1.68 (2)	2.5546 (13)		162 (2)
N1C—H13C···O3B ⁱⁱⁱ		0.890 (17)		1.954 (18)	2.8328 (14)		168.6 (16)
N1C—H14C···O2A ^{iv}		0.887 (17)		2.087 (17)	2.9144 (15)		154.9 (15)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x+1/2, -y+1/2, z+1/2; (iii) x, y-1, z; (iv) x, -y+1, z-1/2.

0.91 (2)

1.18 (2)

1.65 (2)

1.23 (2)

Table 2

O4A—H1A…O3A

O3B—H1B…O4B

 $Cg \cdots Cg$ interactions (Å)Cg2 is the centroid of the C1–C6 ring. $CgX \cdots CgY$ Cg \cdots Cg $CgX \cdots Cg2^i$ Cg \cdots Cg $Cg2 \cdots Cg2^i$ 3.646 (5)-3.460 (6)-3.460 (6)Symmetry code: (i) -x, y, 1/2-z.

Fig. 1

